

Copyright © 2002 - 2015 KEMP Technologies, Inc. All Rights Reserved. Page 1 / 16

AFP Rule Writing Guide
Technical Note

AFP Rule Writing

Guide
Technical Note

 VERSION: 1.0

UPDATED: NOVEMBER 2014

Copyright © 2002 - 2015 KEMP Technologies, Inc. All Rights Reserved. Page 2 / 16

AFP Rule Writing Guide
Technical Note

Copyright Notices

Copyright © 2002-2015 KEMP Technologies, Inc.. All rights reserved.. KEMP Technologies and the KEMP
Technologies logo are registered trademarks of KEMP Technologies, Inc..

KEMP Technologies, Inc. reserves all ownership rights for the LoadMaster product line including software
and documentation. The use of the LoadMaster Exchange appliance is subject to the license agreement.
Information in this guide may be modified at any time without prior notice.

Microsoft Windows is a registered trademarks of Microsoft Corporation in the United States and other
countries. All other trademarks and service marks are the property of their respective owners.

Limitations: This document and all of its contents are provided as-is. KEMP Technologies has made efforts
to ensure that the information presented herein are correct, but makes no warranty, express or implied,
about the accuracy of this information. If any material errors or inaccuracies should occur in this document,
KEMP Technologies will, if feasible, furnish appropriate correctional notices which Users will accept as the
sole and exclusive remedy at law or in equity. Users of the information in this document acknowledge that
KEMP Technologies cannot be held liable for any loss, injury or damage of any kind, present or prospective,
including without limitation any direct, special, incidental or consequential damages (including without
limitation lost profits and loss of damage to goodwill) whether suffered by recipient or third party or from
any action or inaction whether or not negligent, in the compiling or in delivering or communicating or
publishing this document.

Any Internet Protocol (IP) addresses, phone numbers or other data that may resemble actual contact
information used in this document are not intended to be actual addresses, phone numbers or contact
information. Any examples, command display output, network topology diagrams, and other figures
included in this document are shown for illustrative purposes only. Any use of actual addressing or contact
information in illustrative content is unintentional and coincidental.

Portions of this software are; copyright (c) 2004-2006 Frank Denis. All rights reserved; copyright (c) 2002
Michael Shalayeff. All rights reserved; copyright (c) 2003 Ryan McBride. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE ABOVE COPYRIGHT HOLDERS ''AS IS'' AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE ABOVE COPYRIGHT
HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

The views and conclusions contained in the software and documentation are those of the authors and
should not be interpreted as representing official policies, either expressed or implied, of the above
copyright holders..

Portions of the LoadMaster software are copyright (C) 1989, 1991 Free Software Foundation, Inc. -51
Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA- and KEMP Technologies Inc. is in full compliance
of the GNU license requirements, Version 2, June 1991. Everyone is permitted to copy and distribute
verbatim copies of this license document, but changing it is not allowed.

Portions of this software are Copyright (C) 1988, Regents of the University of California. All rights reserved.

Copyright © 2002 - 2015 KEMP Technologies, Inc. All Rights Reserved. Page 3 / 16

AFP Rule Writing Guide
Technical Note

Redistribution and use in source and binary forms are permitted provided that the above copyright notice
and this paragraph are duplicated in all such forms and that any documentation, advertising materials, and
other materials related to such distribution and use acknowledge that the software was developed by the
University of California, Berkeley. The name of the University may not be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,
WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE.

Portions of this software are Copyright (C) 1998, Massachusetts Institute of Technology

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
documentation files (the "Software"), to deal in the Software without restriction, including without
limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the
Software, and to permit persons to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions
of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Portions of this software are Copyright (C) 1995-2004, Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied warranty. In no event will the authors be
held liable for any damages arising from the use of this software.

Permission is granted to anyone to use this software for any purpose, including commercial applications,
and to alter it and redistribute it freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you wrote the original
software. If you use this software in a product, an acknowledgment in the product documentation would
be appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the
original software.

3. This notice may not be removed or altered from any source distribution.

Portions of this software are Copyright (C) 2003, Internet Systems Consortium

Permission to use, copy, modify, and/or distribute this software for any purpose with or without fee is
hereby granted, provided that the above copyright notice and this permission notice appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING
ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE
USE OR PERFORMANCE OF THIS SOFTWARE.

Used, under license, U.S. Patent Nos. 6,473,802, 6,374,300, 8,392,563, 8,103,770, 7,831,712, 7,606,912, 7,346,695, 7,287,084 and

6,970,933

Copyright © 2002 - 2015 KEMP Technologies, Inc. All Rights Reserved. Page 4 / 16

AFP Rule Writing Guide
Technical Note

Table of Contents

1 Introduction .. 5

1.1 Document Purpose ... 5

1.2 Intended Audience .. 5

2 ModSecurity Rule Writing ... 6

2.1 VARIABLES ... 6

2.2 OPERATOR ... 6

2.3 ACTIONS .. 6

2.4 Rule Syntax .. 7

2.4.1 Rule Example 1 – Cross Site Scripting (XSS) Attack ... 7

2.4.2 Rule Example 2 – Whitelist IP Address .. 8

2.4.3 Rule Example 3 – Chaining Rules .. 9

2.4.4 Rule Example 4 – Shellshock Bash Attack ... 9

Appendix A – KEMP WUI Settings ... 13

Appendix B – Rule Block Function .. 14

References .. 15

Document History ... 16

Copyright © 2002 - 2015 KEMP Technologies, Inc. All Rights Reserved. Page 5 / 16

AFP Rule Writing Guide
Technical Note

1 Introduction

Application Firewall Pack (AFP) services are natively integrated in the KEMP LoadMaster. This

enables secure deployment of web applications, preventing Layer 7 attacks while maintaining

core load balancing services which ensures superior application delivery and security. AFP

functionality directly augments the LoadMaster’s existing security features to create a layered

defence for web applications - enabling a safe, compliant and productive use of published

services.

If you have an AFP license and AFP Support, KEMP provides a number of commercial rules, such

as ip_reputation, which can be set to automatically download and update on a daily basis. These

commercial rules are targeted to protect against specific threats. The KEMP-provided

commercial rules are available when signed up to an AFP subscription.

You can also upload other rules such as the ModSecurity core rule set which contains generic

attack detection rules that provide a base level of protection for any web application.

You can also write and upload your own custom rules, if required.

With the AFP-enabled LoadMaster, you can choose whether to use KEMP-provided rules, custom

rules which can be uploaded or a combination of both.

For a more detailed overview of the AFP feature, please refer to the AFP section in the KEMP

LoadMaster, Product Overview.

For instructions on how to configure the various AFP options in the LoadMaster, refer to the

AFP, Feature Description.

1.1 Document Purpose

The purpose of this document is to provide some guidance on how to write your own custom

AFP rules. These custom rules can be uploaded to the LoadMaster and assigned to Virtual

Services as needed.

1.2 Intended Audience

This document is intended to be read by anyone who is interested in finding out more about

how to write custom AFP rules.

Copyright © 2002 - 2015 KEMP Technologies, Inc. All Rights Reserved. Page 6 / 16

AFP Rule Writing Guide
Technical Note

2 ModSecurity Rule Writing

The ModSecurity Reference Manual should be consulted in any cases where questions arise

relating to the syntax of commands:

https://github.com/SpiderLabs/ModSecurity/wiki/Reference-Manual

In terms of rule writing, the main directive to know is SecRule, which is used to create rules and

thus does most of the work.

Every rule defined by SecRule conforms to the same format, as below:

SecRule VARIABLES OPERATOR [ACTIONS]

The three parts are explained in the sections below.

2.1 VARIABLES

This specifies which places to check in a HTTP transaction. Examples of variables include:

 ARGS – all arguments including the POST payload

 REQUEST_METHOD – request method used in the transaction

 REQUEST_HEADERS – can be used as either a collection of all of the request headers or

can be used to inspect selected headers

 Etc. The full list of variables is available here:

https://github.com/SpiderLabs/ModSecurity/wiki/Reference-Manual#Variables

2.2 OPERATOR

This specifies a regular expression, pattern or keyword to be checked in the variable(s).

Operators begin with the @ character. The full list of operators is available here:

https://github.com/SpiderLabs/ModSecurity/wiki/Reference-Manual#Operators

2.3 ACTIONS

This specifies what to do if the rule matches. Actions are defined in seven categories, listed

below:

 Disruptive – used to allow ModSecurity to take an action, for example allow or block

 Flow – affect the flow, for example skip

 Meta-data – used to provide more information about rules

 Variable – used to set, change and remove variables

 Logging – used to influence the way logging takes place

 Special – used to provide access to another class of functionality

 Miscellaneous – contain actions that do not belong in any other groups.

If no actions are provided, default actions apply as per SecDefaultAction

(phase:2,log,auditlog,pass). The full list of actions are available here:

https://github.com/SpiderLabs/ModSecurity/wiki/Reference-Manual#Actions

https://github.com/SpiderLabs/ModSecurity/wiki/Reference-Manual
https://github.com/SpiderLabs/ModSecurity/wiki/Reference-Manual#Variables
https://github.com/SpiderLabs/ModSecurity/wiki/Reference-Manual#Operators
https://github.com/SpiderLabs/ModSecurity/wiki/Reference-Manual#Actions

Copyright © 2002 - 2015 KEMP Technologies, Inc. All Rights Reserved. Page 7 / 16

AFP Rule Writing Guide
Technical Note

2.4 Rule Syntax

The following rule looks at the request Uniform Resource Identifier (URI) and tries to match the

regular expression pattern <script> against it. The double quotes are used because the second

parameter contains a space:

SecRule REQUEST_URI “@rx <script>”

To split a long line into two, use a single backslash character, followed by a new line:

SecRule ARGS KEYWORD \

 phase:1,t:none,block

Multiple variables can be used in a rule as long as they are separated using the pipe character,

for example:

SecRule REQUEST_URI|REQUEST_PROTOCOL <script>

The SecDefaultAction directive is used if no actions are defined for a rule. For example, the

following rule:

SecRule ARGS D1

Is equivalent to:

SecRule ARGS D1 phase2:log:auditlog,pass

2.4.1 Rule Example 1 – Cross Site Scripting (XSS) Attack

The following rule is used to avoid XSS attacks by checking for a <script> pattern in the request

parameters and header and generates an ‘XSS Attack’ message with a 404 status response.

SecRule ARGS|REQUEST_HEADERS “@rx <script>” id:101,msg: ‘XSS

Attack’,severity:ERROR,deny,status:404

2.4.1.1 Variables

Details about the variables in this rule example are in the table below:

Variable Definition

ARGS Request parameters

REQUEST_HEADERS All of the request headers

2.4.1.2 Operator

“@rx <script>” – Performs a regular expression match of the pattern (in this case <script>)

provided as a parameter.

Copyright © 2002 - 2015 KEMP Technologies, Inc. All Rights Reserved. Page 8 / 16

AFP Rule Writing Guide
Technical Note

2.4.1.3 Actions

Details of the actions contained in this rule example are provided in the table below:

Action(s) Description

id, msg,

severity,

deny, status

These are all of the actions to be performed if the pattern is matched.

id:101 The unique ID that is assigned to the rule (or chain) in which it appears.

msg: “XSS

Attack”

The custom message (i.e. XSS Attack) assigned to the rule (or chain) in
which it appears.

Severity:ERROR The severity of the rule. Severities include:

 EMERGENCY (0)

 ALERT (1)

 CRITICAL (2)

 ERROR (3)

 WARNING (4)

 NOTICE (5)

 INFO (6)

 DEBUG (7)

deny This stops rule processing and intercepts transaction. This is a disruptive
action.

status:404 This specifies the response status code (404) with actions deny and
redirect.

2.4.2 Rule Example 2 – Whitelist IP Address

The following example shows how to whitelist an IP address to bypass the ModSecurity engine:

SecRule REMOTE_ADDR “@ipMatch 192.168.1.101” \

id:102,phase:1,t:none,nolog,pass,ctl:ruleEngine=off

2.4.2.1 Variables

Variable Name: REMOTE_ADDR

Variable Definition: The IP address of the remote client

2.4.2.2 Operator

“@ipMatch 192.168.1.101” – Performs an IPv4 or IPv6 match of the REMOTE_ADDR

variable data. In this care – this is the whitelisted IP address.

Copyright © 2002 - 2015 KEMP Technologies, Inc. All Rights Reserved. Page 9 / 16

AFP Rule Writing Guide
Technical Note

2.4.2.3 Actions

Action(s) Description

id:101 The unique ID that is assigned to the rule (or chain) in which it
appears.

phase:1 Places the rule (or chain) in Phase 1 processing. There are five
phases, including:

 Request Headers (1)

 Request Body (2)

 Response Headers (3)

 Response Body (4)

 Logging (5)

t:none Indicates that no action is used to transform the value of the
variable used in the rule before matching. For example,
t:utf8toUnicode converts all UTF-8 character sequences to
Unicode to assist in input normalization.

nolog Prevents rule matches from appearing in both the error and audit
logs.

pass Continues processing with the next rule in spite of a successful
match.

ctl:ruleEngine=off This action changes ModSecurity configuration on a transient, per-
transaction basis. This only affects the transaction in which the
action is executed. In this case, the ModSecurity rule engine is
turned off.

2.4.3 Rule Example 3 – Chaining Rules

This section shows an example of chaining two rules. In this example, the first rule checks if the

username (ARGS:username) for the string admin (streq admin) using a string comparison.

If the first rule holds true, the second rule is activated which denies all requests that are not

from the REMOTE_ADDR 192.168.1.111 IP Address (!streq 192.168.1.111).

SecRule ARGS:username “@streq admin” chain,deny

SecRule REMOTE_ADDR “!streq 192.168.1.111”

2.4.4 Rule Example 4 – Shellshock Bash Attack

This section shows an example of the rules requires to mitigate the Shellshock Bash attack.

There are two rules needed in this case. Details of both rules are provided in the sections below.

Copyright © 2002 - 2015 KEMP Technologies, Inc. All Rights Reserved. Page 10 / 16

AFP Rule Writing Guide
Technical Note

2.4.4.1 First Rule

This is the first rule:

SecRule REQUEST_LINE|REQUEST_HEADERS|REQUEST_HEADERS_NAMES

"@contains () {"

"phase:1,id:'2100080',block,t:none,t:utf8toUnicode,t:urlDecodeUni

,t:compressWhitespace,msg:'SLR: Bash ENV Variable Injection

Attack',tag:'CVE-2014-6271',tag:'http://cve.mitre.org/cgi-

bin/cvename.cgi?name=CVE-2014-

6271',tag:'https://securityblog.redhat.com/2014/09/24/bash-

specially-crafted-environment-variables-code-injection-attack/'"

 Variables

Details about the variables in this example rule are provided in the table below:

Variable Definition

REQUEST_LINE This variable holds the complete
request line sent to the server

(including the request method and
HTTP version information).

REQUEST_HEADERS All of the request headers

REQUEST_HEADERS_NAMES All of the names of the request
headers.

 Operator

"@contains () {" – Checks the

REQUEST_LINE|REQUEST_HEADERS|REQUEST_HEADERS_NAMES variables for the string

‘() {’ and returns true if found.

 Actions

Action(s) Description

phase:1 Places the rule (or chain) in Phase 1 processing. There are
five phases, including:

 Request Headers (1)

 Request Body (2)

 Response Headers (3)

 Response Body (4)

 Logging (5)

id:'2100080' The unique ID that is assigned to this rule (or chain) in which
it appears.

Copyright © 2002 - 2015 KEMP Technologies, Inc. All Rights Reserved. Page 11 / 16

AFP Rule Writing Guide
Technical Note

Action(s) Description

block This performs the disruptive action defined by the previous
SecDefaultAction. This allows rule writers to request a
blocking action without specifying how the blocking is to be

done. The SecRuleUpdateActionById directive
allows you to override how a rule handles blocking. Please
refer to Appendix B – Rule Block Function for further
details.

t:none Indicates that no action is used to transform the value of the
variable used in the rule before matching.

t:utf8toUnicode Converts all UTF-8 character sequences to Unicode to assist
in input normalization.

t:urlDecodeUni Decodes a URL-encoded input string with support for the
Microsoft-specific %u encoding.

t:compressWhitespace Converts any of the whitespace characters (0x20, \f, \t, \n,
\r, \v, 0xa0) to spaces (ASCII 0x20), compressing multiple
consecutive space characters into one.

msg:'SLR: Bash ENV Variable Injection

Attack',tag:'CVE-2014-6271'
The custom message (i.e. XSS Attack) assigned to the rule
(or chain) in which it appears.

tag:'http://cve.mitre.org/cgi-

bin/cvename.cgi?name=CVE-2014-6271'

tag:'https://securityblog.redhat.com/2014/0

9/24/bash-specially-crafted-environment-

variables-code-injection-attack/'

Assigns a tag (category) to a rule (or chain). This is metadata
allows easy automated categorization of events. Multiple
tags can be specified on the same rule.

2.4.4.2 Second Rule

The second rule is as follows:

SecRule REQUEST_BODY "@contains () {"

"phase:2,id:'2100081',block,t:none,t:utf8toUnicode,t:urlDecodeUni

,t:compressWhitespace,msg:'SLR: Bash ENV Variable Injection

Attack',tag:'CVE-2014-6271',tag:'http://cve.mitre.org/cgi-

bin/cvename.cgi?name=CVE-2014-

6271',tag:'https://securityblog.redhat.com/2014/09/24/bash-

specially-crafted-environment-variables-code-injection-attack/'"

 Variables

Variable Name: REQUEST_BODY

Variable Definition: All of the request body.

Copyright © 2002 - 2015 KEMP Technologies, Inc. All Rights Reserved. Page 12 / 16

AFP Rule Writing Guide
Technical Note

 Operator

"@contains () {" – Checks the REQUEST_BODY variable for the string ‘() {’ and

returns true if found.

 Actions

Action(s) Description

phase:2 Places the rule (or chain) in Phase 2 processing. There are
five phases, including:

 Request Headers (1)

 Request Body (2)

 Response Headers (3)

 Response Body (4)

 Logging (5)

id:'2100081' The unique ID that is assigned to this rule (or chain) in which
it appears.

block This performs the disruptive action defined by the previous
SecDefaultAction. This allows rule writers to request a
blocking action, but without specifying how the blocking is
to be done. The SecRuleUpdateActionById directive
allows you to override how a rule handles blocking. Please
refer to Appendix B – Rule Block Function for further
details.

t:none Indicates that no action is used to transform the value of the
variable used in the rule before matching.

t:utf8toUnicode Converts all UTF-8 character sequences to Unicode to assist
in input normalization.

t:urlDecodeUni Decodes a URL-encoded input string with support for the
Microsoft-specific %u encoding.

t:compressWhitespace Converts any of the whitespace characters (0x20, \f, \t, \n,
\r, \v, 0xa0) to spaces (ASCII 0x20), compressing multiple
consecutive space characters into one.

msg:'SLR: Bash ENV Variable Injection

Attack',tag:'CVE-2014-6271'
The custom message (i.e. XSS Attack) assigned to the rule
(or chain) in which it appears.

tag:'http://cve.mitre.org/cgi-

bin/cvename.cgi?name=CVE-2014-6271'

tag:'https://securityblog.redhat.com/2014/0

9/24/bash-specially-crafted-environment-

variables-code-injection-attack/'

Assigns a tag (category) to a rule (or chain). This is metadata
which allows easy automated categorization of events.
Multiple tags can be specified on the same rule.

Copyright © 2002 - 2015 KEMP Technologies, Inc. All Rights Reserved. Page 13 / 16

AFP Rule Writing Guide
Technical Note

Appendix A – KEMP WUI Settings

In the LoadMaster Web User Interface (WUI), AFP settings can be configured for each individual

Virtual Service.

Figure 0-1: WAF Options

In the WAF Options section of the Virtual Service modify screen (Virtual Services > View/Modify

Services > Modify), there is a drop-down list called Default Operation. The Default Operation

can be set to Audit Only or Block Mode.

The Audit Only mode of operation sets the SecDefaultAction to

phase:2,log,auditlog,pass.

The Block Mode of operation sets the SecDefaultAction to

phase:2,log,auditlog,block,drop.

Copyright © 2002 - 2015 KEMP Technologies, Inc. All Rights Reserved. Page 14 / 16

AFP Rule Writing Guide
Technical Note

Appendix B – Rule Block Function

The rule block function is quite complicated. This section offers further explanation of the rule

block function. The following example has been taken from

https://github.com/Spiderlabs/ModSecurity/wiki/Reference-Manual#block and further

explanatory text has been added.

The block action is essentially a placeholder that is intended to be used by rule writes to

request a blocking action, but without specifying how the blocking is to be done. The

SecDefaultAction command specifies how the blocking is to be done. The block action is

a placeholder that will be replaced by the action from the last SecDefaultAction in the

same context.

Block Example 1

The following example shows the SecDefaultAction set to deny. The second rule will

“deny” because the SecDefaultAction is set to deny.

SecDefaultAction phase:2,deny,id:101,status:403,log,auditlog

SecRule ARGS attack2 phase:2,pass,id:103

SecRule ARGS attack1 phase:2,block,id:102

Block Example 2

The following example shows the usage of the SecRuleUpdateActionById command to

override how a rule handles blocking. The SecRuleUpdateActionById command allows a

rule to be reverted back to the previous SecDefaultAction. In this example, the first rule

(SecRule ARGS attack1 phase:2,deny,id:1) would deny based on meeting the

successful conditions associated with the rule.

By using the SecRuleUpdateActionById against rule Id 1 and indicating block, we are

associating the first rule action to that of the SecDefaultAction which is pass. So in the

case, the first rule would pass based on meeting the successful conditions associated with the

rule; it would not deny.

SecDefaultAction phase:2,pass,log,auditlog

SecRule ARGS attack1 phase:2,deny,id:1

SecRuleUpdateActionById 1 block

https://github.com/Spiderlabs/ModSecurity/wiki/Reference-Manual#block

Copyright © 2002 - 2015 KEMP Technologies, Inc. All Rights Reserved. Page 15 / 16

AFP Rule Writing Guide
Technical Note

References

Unless otherwise specified, the following documents can be found at

http://www.kemptechnologies.com/documentation.

ModSecurity Reference Manual

https://github.com/SpiderLabs/ModSecurity/wiki/Reference-Manual

AFP, Feature Description

KEMP LoadMaster, Product Overview

http://www.kemptechnologies.com/documentation
https://github.com/SpiderLabs/ModSecurity/wiki/Reference-Manual

Copyright © 2002 - 2015 KEMP Technologies, Inc. All Rights Reserved. Page 16 / 16

AFP Rule Writing Guide
Technical Note

Document History

Date Change Reason for Change Version Resp.

Nov 2014 Initial draft First draft of document 1.0 LB

