
Writing a Resource Based
(Adaptive) Server Agent

Technical Note

UPDATED: 22 March 2021

Copyright Notices

Copyright © 2002-2021 Kemp Technologies, Inc. All rights reserved. Kemp Technologies and the
Kemp Technologies logo are registered trademarks of Kemp Technologies, Inc.

Kemp Technologies, Inc. reserves all ownership rights for the LoadMaster and Kemp 360 product
line including software and documentation.

Used, under license, U.S. Patent Nos. 6,473,802, 6,374,300, 8,392,563, 8,103,770, 7,831,712, 7,606,912,
7,346,695, 7,287,084 and 6,970,933

kemp.ax 2 Copyright 2002-2021, Kemp Technologies, All Rights Reserved

Writing a Resource Based (Adaptive) Server Agent

Table of Contents

1 Document Purpose 4

2 Related Firmware Version 5

3 Custom Server Agents and Adaptive Scheduling 6

4 Sample Linux Agent Script 10

5 Sample Windows Agent Script 13

Last Updated Date 15

kemp.ax 3 Copyright 2002-2021, Kemp Technologies, All Rights Reserved

Writing a Resource Based (Adaptive) Server Agent

1 Document Purpose
This document outlines how to create your own load balancing server agent to use in conjunction
with the resource based (adaptive) Virtual Service (VS) scheduling method, which is one of the VS
Scheduling Method choices in the VS Standard Options. This document focuses primarily on the
requirements for creating and configuring such agents on arbitrary server operating systems (for
example, the protocol used by the agent to communicate load values to the LoadMaster), and less
on the mechanics of generating a load value using specific Operating System (OS) utilities.
Nevertheless, this document presents simple examples of implementing and deploying a server
agent on both a Windows and Linux system.

In the remainder of this document, the resource based (adaptive) scheduling method is referred to
simply as adaptive scheduling.

kemp.ax 4 Copyright 2002-2021, Kemp Technologies, All Rights Reserved

Writing a Resource Based (Adaptive) Server Agent

1 Document Purpose

2 Related Firmware Version
Published with LMOS version 7.2.48.3 LTS. This document has not required substantial changes
since 7.2.48.3 LTS. However, the content is in sync with the latest LoadMaster LTS firmware.

kemp.ax 5 Copyright 2002-2021, Kemp Technologies, All Rights Reserved

Writing a Resource Based (Adaptive) Server Agent

2 Related Firmware Version

3 Custom Server Agents and
Adaptive Scheduling
Adaptive scheduling requires the following on every Real Server (RS) in the VS:

l There is an HTTP server running on the RS and the endpoint for this HTTPS server is
accessible to the LoadMaster.

l There is a server agent installed and running on the RS that does the following:

l Periodically queries the RS operating system for whatever system load statistics are
available and desired.

l Uses the load values obtained from the operating system to arrive at an integer value.

l Places the integer value in a file underneath the root directory of the HTTP server
running on the RS. This is the file that the LoadMaster requests using an HTTP GET
command. It must contain a single integer value and nothing else.

The server agent and an appropriately configured HTTP server must be running on all RSs in a VS
before selecting adaptive scheduling on the VS.

On the LoadMaster side:

l Once adaptive scheduling is selected on a VS, the LoadMaster periodically attempts to
retrieve the file populated by the server agent from each RS, with the integer load value.

l Until the LoadMaster successfully retrieves an integer load value from a Real Server, it
is considered unavailable.

l Once an integer load value is retrieved, the LoadMaster modifies the status of the Real
Server by interpreting the integer retrieved according to the table below.

Agent
Response

Action Taken Description

No HTTP
Response

Dynamic Weight
= 0

If the LoadMaster gets no response when it attempts to get the
file containing the load value, then the Real Server is assumed to
be unavailable and it is marked down. This is done by setting
the server's dynamic weightto 0 so that no new connections are

kemp.ax 6 Copyright 2002-2021, Kemp Technologies, All Rights Reserved

Writing a Resource Based (Adaptive) Server Agent

3 Custom Server Agents and Adaptive Scheduling

sent to it. Currently open connections are not affected. This
typically happens when either the Real Server is unavailable, or
the required HTTP server is not responding to the =query from
the LoadMaster.

File does
not exist

Dynamic Weight
= 100

If the HTTP server is running on the Real Server and responds to
the LoadMaster's query, it may send a response that indicates
the file requested does not exist. In this case, the server is
assumed to be available, it is marked up, and the server
dynamic weight is set to 100.

File is
empty

Dynamic Weight
= 100

If the HTTP server is running on the Real Server and responds to
the LoadMaster’s query with an empty file (the file contains no
data at all), the server is assumed to be available. It is then
marked up and the server dynamic weight is set to 100.

File
contains a
non-integer

value

Dynamic Weight
= 100

If the file returned by the HTTP server running on the Real Server
contains a non-integer value, then the server is assumed to be
available. It is then marked up and the server dynamic weight is
set to 100.

< 0
Dynamic Weight

= 100

If the file returned by the HTTP server running on the Real Server
contains a negative integer value (for example, - 1), then the
server is assumed to be available, it is marked up, and the server
dynamic weight is set to 100.

0

Switch to the
round robin
scheduling
method

If the file returned by the HTTP server running on the Real Server
contains an integer value of 0 (zero), this forces the LoadMaster
to temporarily fall back to using the round robin scheduling
method until the server agent returns a value other than 0 on a
subsequent query. This return value is intended to be used in a
situation where the server agent code cannot for some reason
arrive at a valid integer value to return to the LoadMaster. This
might happen if, for example, the server is not responding to the
queries from the agent for load values.

1-100
Dynamic Weight
set appropriately

If the file returned by the HTTP server running on the Real Server
contains an integer value between 1 and 100, this is interpreted
as a percentage of fully loaded (1=lowest load, 100 = fully
loaded). The LoadMaster sets the dynamic weight appropriately:
the higher the number returned by the server agent, the lower
that the dynamic weight of the server is set to.

kemp.ax 7 Copyright 2002-2021, Kemp Technologies, All Rights Reserved

Writing a Resource Based (Adaptive) Server Agent

3 Custom Server Agents and Adaptive Scheduling

102
Dynamic Weight
= 0 plus optional
connection drop

If the file returned by the HTTP server running on the Real Server
contains an integer value of 102, this means essentially the same
as returning 101. The only difference is that the LoadMaster will
also drop all currently open connections if the Drop connections
on RS failure option is set on the associated VS.

> 102
Dynamic Weight

= 0
A return of 103 or greater is treated the same as a return of 101.

On any Real Server operating system, a straightforward manner in which to implement a server
agent is to write a shell script or executable program that runs periodically using a standard
system scheduler, like cron on Linux systems or the Task Scheduler on Windows systems. This
script would use standard utilities to generate the load value and place it in a file under the HTTP
server root.

Such a script could be as simple as this Linux bash script.:

#! /bin/bash
top –l1 | awk ‘/CPU Usage/ {printf “%d\n”, $7} > /<path>/load

The above uses the top command and a short awk script to copy the current CPU load value in a
file – the <path> above specifies the path to the root of an HTTP server on the Real Server. The file
name ‘load’ is the default file name retrieved by the LoadMaster. [This and other adaptive load
balancing options are located in the User Interface (UI) under Rules & Checking > Check Parameters
> Adaptive Parameters.]

Alternatively, you could instead write a Common Gateway Interface (CGI) program or any other
program that the HTTP server can be configured to run when the LoadMaster sends a GET for the
required file to the HTTP server. This program would generate the integer load value when the
LoadMaster requests the file from the server and the HTTP server would return it to the
LoadMaster.

There are advantages and disadvantages to either approach. For example:

l Using a static file populated using a cron job is a simple and easy-to-maintain option, but
also means that the data in the file could be stale when it is accessed by the LoadMaster.
The interval at which the load value is generated should be based on the known
performance profile of the server.

l Using a program that runs each time the LoadMaster checks performance means that you
will get the most accurate data, but the server agent itself could contribute to system load if
CPU, Disk I/O, and network performance were all being continually checked by the server
agent.

kemp.ax 8 Copyright 2002-2021, Kemp Technologies, All Rights Reserved

Writing a Resource Based (Adaptive) Server Agent

3 Custom Server Agents and Adaptive Scheduling

The approach you choose most likely depends on the needs of your configuration and the tools you
typically use.

In terms of internal processing, a server agent can be as complicated as you like, depending on
your application. If your application is completely CPU-intensive, then a simple script like the two-
line bash script above may be enough. But, if your application also generates significant disk I/O or
network-traffic, you will probably want to consider the load on those resources in addition to CPU
usage to get a more detailed view of server performance.

kemp.ax 9 Copyright 2002-2021, Kemp Technologies, All Rights Reserved

Writing a Resource Based (Adaptive) Server Agent

3 Custom Server Agents and Adaptive Scheduling

4 Sample Linux Agent Script
The following script is an example of gathering load information on CPU and memory, and then
combining them into a single integer value that the LoadMaster can use for adaptive scheduling. It
is written as a bash shell script and is intended to be run on a Linux server using a privileged
crontab file. See the Linux manual pages for bash, crontab, and the commands used in the script
to gather the required statistics.

This script is intended solely as an example, although it could be used in a demonstration or proof
of concept of how to configure adaptive scheduling.

#! /bin/bash
#
Very simple adaptive server agent program, intended to be run via a root
or similarly privileged crontab(1) entry to periodically populate
the file LoadMaster expects to be available via HTTP on the Real Server.

DEFAULTS
This is the default filename expected by LoadMaster. This setting must
match what's on "Rules & Checking > Adaptive Parameters" in the LM WUI.
LOAD_FILE_PATH=/load
This is the default doc root of apache2 on an ubuntu server, and where
we'll place the 'load' file defined above for LoadMaster to GET.
DOCROOT=/var/www/html
Define the weights to be used for CPU and Memory.
Change these numbers to indicate the percentage weight that each
statistic should carry when figuring the overall load value to
return to LoadMaster. By default, these are set to 0.25 for CPU and 0.75
for Memory, so the effect of the weighting is apparent. Weights must
add up to 1.
CPUweight=0.25
MEMweight=0.75
GET MEMORY STATS
Get memory usage from the free(1) command using a simple awk command and
calculate the percentage of memory used. Since the shell does integer
arithmetic only, we'll use bc(1) to do the math.
MEMtotal=`free | awk '/Mem:/ {print $2}'`
MEMstatus=$?
MEMused=`free | awk '/Mem:/ {print $3}'`
MEMload=`echo "scale=3;($MEMused / $MEMtotal) * 100" | bc`
Round the answer to the nearest integer
MEMloadrnd=`echo "$MEMload + 0.5" | bc`
MEMloadrnd=`echo "scale=0; $MEMloadrnd/1" | bc`
GET CPU LOAD
Note: Some version of top(1) report avg. CPU usage since time of last
reboot in the first iteration, so we'll take the second iteration value.
CPUidletop=`top -b -n2 -d.2 | awk '/%Cpu/ {print $8}'`
CPUidle=`echo $CPUidletop | cut -d" " -f2`
CPUload=`echo "scale=3;100 - $CPUidle" | bc`
CPUstatus=$?
Round the answer to the nearest integer
CPUloadrnd=`echo "$CPUload + 0.5" | bc`

kemp.ax 10 Copyright 2002-2021, Kemp Technologies, All Rights Reserved

Writing a Resource Based (Adaptive) Server Agent

4 Sample Linux Agent Script

CPUloadrnd=`echo "scale=0; $CPUloadrnd/1" | bc`
CHECK IF STATS ARE A VALID % (between 1 and 100)
VALID_STATS=1 means stats are valid.
if stats are not valid, we want to return 0 to LM to disable adaptive
LB and use round robin until a different value is received.
VALID_STATS=1
if [$MEMloadrnd -lt 1 -o $MEMloadrnd -gt 100 -o $CPUloadrnd -lt 1 \

-o $CPUloadrnd -gt 100]
then

VALID_STATS=0
RETURNED_LOAD=0

fi
CALCULATE THE WEGHTED AVERAGE OF $CPUload AND $MEMload.
Only do this if stats were valid - i.e., $VALID_STATS=1.
if [$VALID_STATS -eq 1]
then

RSload=`echo "($CPUweight * $CPUloadrnd) + \
($MEMweight * $MEMloadrnd)" | bc`

RSloadrnd=`echo "$RSload + 0.5" | bc`
RSloadrnd=`echo "scale=0; $RSloadrnd/1" | bc`
RETURNED_LOAD=$RSloadrnd

fi
DETERMINE IF WE SHOULD RETURN 101 OR 102.
Returning 101 or 102 in the case of a highly loaded system is somewhat
a matter of policy. In this example, we'll return 101 (take the server
out of rotation) when stats are valid AND the aggregated load value
is above 90%, to allow more resources to become available. If the
aggregate load goes above 96%, we'll return 102 (which takes the server
out of rotation AND drops all current connections). Presumably, once
more resources are available, load values will decrease, and the
server agent will return a lower value on a subsequent run.
if [$VALID_STATS -eq 1 -a $RSloadrnd -gt 90]
then

RETURNED_LOAD=101
elif [$VALID_STATS -eq 1 -a $RSloadrnd -gt 96]
then

RETURNED_LOAD=102
fi
PUT THE LOAD VALUE IN THE FILE.
If stats were not valid above, then return 0 -- this disables adaptive
scheduling and uses round robin instead; else, return the computed load.
if [$VALID_STATS -eq 0]
then

RETURNED_LOAD=0
fi
echo $RETURNED_LOAD > ${DOCROOT}${LOAD_FILE_PATH}
PRINT EVERYTHING TO STDOUT FOR DEBUGGING
This allows for running the script from the command line to test in
your environment -- or, if the script is run via cron, cron will
capture the output and email it to you so you can debug any issues.
Once you're happy the script is working properly, comment these lines
out to avoid being emailed output by cron every time the script runs.
echo RETURNED_LOAD = $RETURNED_LOAD
echo RSload = $RSload
echo RSloadrnd = $RSloadrnd
echo MEMweight = $MEMweight
echo MEMtotal = $MEMtotal
echo MEMused = $MEMused
echo MEMload = $MEMload
echo MEMloadrnd = $MEMloadrnd
echo MEMstatus = $MEMstatus

kemp.ax 11 Copyright 2002-2021, Kemp Technologies, All Rights Reserved

Writing a Resource Based (Adaptive) Server Agent

4 Sample Linux Agent Script

echo CPUweight = $CPUweight
echo CPUidle = $CPUidle
echo CPUload = $CPUload
echo CPUloadrnd = $CPUloadrnd
echo CPUstatus = $CPUstatus
EXIT with appropriate status
if [$VALID_STATS -eq 1 -a $MEMstatus -eq 0 -a $CPUstatus -eq 0]
then
success

exit 0
else
error

exit 1
fi
EOF

kemp.ax 12 Copyright 2002-2021, Kemp Technologies, All Rights Reserved

Writing a Resource Based (Adaptive) Server Agent

4 Sample Linux Agent Script

5 Sample Windows Agent
Script
The following script is similar in function to the Linux script presented in the previous section, but
is written in Windows PowerShell rather than the Linux bash shell and uses Windows Management
Instrumentation (WMI) commands to do the job of gathering performance data. The script can be
set to run periodically as a Windows Task and assumes that there is an already running IIS server
on the Windows Real Server that will respond to the GET request from the LoadMaster for the load
value file created by the server agent.

This script is intended solely as an example, although it could be used in a demonstration or proof
of concept of how to configure adaptive scheduling.

#
Very simple adaptive server agent program, intended to be run via a
Task Scheduler Task with system level privileges, to periodically
populate the file LoadMaster expects to be available via HTTP on the
Real Server.
DEFAULTS
This is the default filename expected by LoadMaster. This setting must
match what's on "Rules & Checking > Adaptive Parameters" in the LM WUI.
$LOAD_FILE_PATH="\load"
This is the default root of a Windows IIS server. Change this to match
the location where your HTTP server will require the load file (above)
to be placed so that LoadMaster can access it using an HTTP GET request.
$DOCROOT="\inetpub\wwwroot"
Define the weights to be used for CPU and Memory.
Change these numbers to indicate the percentage weight that each
statistic should carry when figuring the overall load value to
return to LoadMaster. By default, these are set to 0.25 for CPU and 0.75
for Memory, so the effect of the weighting is apparent. Weights must
add up to 1.
$CPUweight=0.25
$MEMweight=0.75
GET MEMORY STATS
[int]$MEMtotal=(Get-WmiObject -Class win32_
operatingsystem).TotalVisibleMemorySize
[int]$MEMfree=(Get-WmiObject -Class win32_operatingsystem).FreePhysicalMemory
[int]$MEMused=$MEMtotal - $MEMfree
$MEMloadpct=($MEMused / $MEMtotal).tostring("P")
[int]$MEMload=($MEMused / $MEMtotal * 100)
GET CPU LOAD
$CPUload=Get-WmiObject win32_processor | select -Expand LoadPercentage
$VALID_STATS=1
$RETURNED_LOAD=1
if ($MEMload -lt 1 -or $MEMload -gt 100 -or $CPUload -lt 1 -or $CPUload -gt
100)
{

kemp.ax 13 Copyright 2002-2021, Kemp Technologies, All Rights Reserved

Writing a Resource Based (Adaptive) Server Agent

5 Sample Windows Agent Script

$VALID_STATS=0
$RETURNED_LOAD=0

}
CALCULATE THE WEGHTED AVERAGE OF $CPUload AND $MEMload.
Only do this if stats were valid - i.e., $VALID_STATS=1.
if ($VALID_STATS -eq 1)
{

[int]$RSload=($CPUweight * $CPUload) + ($MEMweight * $MEMload)
$RETURNED_LOAD=$RSload

}
DETERMINE IF WE SHOULD RETURN 101 OR 102.
Returning 101 or 102 in the case of a highly loaded system is somewhat
a matter of policy. In this example, we'll return 101 (take the server
out of rotation) when stats are valid AND the aggregated load value
is above 90%, to allow more resources to become available. If the
aggregate load goes above 96%, we'll return 102 (which takes the server
out of rotation AND drops all current connections). Presumably, once
more resources are available, load values will decrease, and the
server agent will return a lower value on a subsequent run.
if ($VALID_STATS -eq 1 -and $RSload -gt 90)
{

$RETURNED_LOAD=101
}
elseif ($VALID_STATS -eq 1 -and $RSload -gt 96)
{

$RETURNED_LOAD=102
}
PUT THE LOAD VALUE IN THE FILE.
If stats were not valid above, then return 0 -- this disables adaptive
scheduling and uses round robin instead; else, return the rounded load.
if ($VALID_STATS -eq 0)
{

RETURNED_LOAD=0
}
echo $RETURNED_LOAD > $DOCROOT$LOAD_FILE_PATH
PRINT EVERYTHING TO STDOUT FOR DEBUGGING
This allows for running the script from the command line to test in
your environment. Once you're happy the script is working properly,
comment these lines out.
echo "VALID_STATS = $VALID_STATS"
echo "RETURNED_LOAD = $RETURNED_LOAD"
echo "MEMload = $MEMload"
echo "MEMloadpct = $MEMloadpct"
echo "CPUload = $CPUload"
EXIT with appropriate status
if ($VALID_STATS -eq 1)
{
success

exit 0
}
else
{
invalid stats -- error

exit 1
}
EOF

kemp.ax 14 Copyright 2002-2021, Kemp Technologies, All Rights Reserved

Writing a Resource Based (Adaptive) Server Agent

5 Sample Windows Agent Script

Last Updated Date
This document was last updated on 22 March 2021.

kemp.ax 15 Copyright 2002-2021, Kemp Technologies, All Rights Reserved

Writing a Resource Based (Adaptive) Server Agent

Last Updated Date

	1 Document Purpose
	2 Related Firmware Version
	3 Custom Server Agents and Adaptive Scheduling
	4 Sample Linux Agent Script
	5 Sample Windows Agent Script
	Last Updated Date

