
WAF Rule Writing Guide

Technical Note

UPDATED: 25 April 2021

Copyright Notices

Copyright © 2002-2021 Kemp Technologies, Inc. All rights reserved. Kemp Technologies and the
Kemp Technologies logo are registered trademarks of Kemp Technologies, Inc.

Kemp Technologies, Inc. reserves all ownership rights for the LoadMaster and Kemp 360 product line
including software and documentation.

Used, under license, U.S. Patent Nos. 6,473,802, 6,374,300, 8,392,563, 8,103,770, 7,831,712, 7,606,912,
7,346,695, 7,287,084 and 6,970,933

kemp.ax 2 Copyright 2002-2021, Kemp Technologies, All Rights Reserved

WAF Rule Writing Guide

Table of Contents

1 Introduction 5

1.1 Document Purpose 5

1.2 Intended Audience 5

1.3 Related Firmware Version 6

2 ModSecurity Rule Writing 7

2.1 Variables 7

2.2 Operator 8

2.3 Transformation Functions 8

2.4 Actions 8

2.5 Rule Syntax 9

2.5.1 Rule Example 1 – Cross Site Scripting (XSS) Attack 9

2.5.1.1 Variables 9

2.5.1.2 Operator 10

2.5.1.3 Actions 10

2.5.2 Rule Example 2 – Whitelist IP Address 10

2.5.2.1 Variables 11

2.5.2.2 Operator 11

2.5.2.3 Actions 11

2.5.3 Rule Example 3 – Chaining Rules 12

2.5.4 Rule Example 4 – Shellshock Bash Attack 12

2.5.4.1 First Rule 12

kemp.ax 3 Copyright 2002-2021, Kemp Technologies, All Rights Reserved

WAF Rule Writing Guide

2.5.4.1.1 Variables 12

2.5.4.1.2 Operator 13

2.5.4.1.3 Actions 13

2.5.4.2 Second Rule 14

2.5.4.2.1 Variables 14

2.5.4.2.2 Operator 15

2.5.4.2.3 Actions 15

2.6 Kemp WUI Settings 16

2.7 Rule Block Function 17

3 Managing Custom WAF Rules in the LoadMaster 19

3.1 Add a Custom Rule 19

3.2 Delete/Download a Custom Rule or Data File 20

4 Assigning Custom Rules to a Virtual Service 21

4.1 WAF Misconfigured State 22

5 Backing Up and Restoring WAF Configuration 23

References 24

Last Updated Date 25

kemp.ax 4 Copyright 2002-2021, Kemp Technologies, All Rights Reserved

WAF Rule Writing Guide

1 Introduction
Kemp Web Application Firewall (WAF) services are natively integrated in the Kemp LoadMaster. This
enables secure deployment of web applications, preventing Layer 7 attacks while maintaining core
load balancing services which ensures superior application delivery and security. WAF functionality
directly augments the LoadMaster’s existing security features to create a layered defence for web
applications - enabling a safe, compliant and productive use of published services.

If you have a WAF license and WAF Support, Kemp provides a number of commercial rules, such as
ip_reputation. These commercial rules are targeted to protect against specific threats. The Kemp-
provided commercial rules are available when signed up to a WAF subscription.

You can also upload other rules such as the ModSecurity core rule set which contains generic attack
detection rules that provide a base level of protection for any web application.

You can also write and upload your own custom rules, if required.

With the WAF-enabled LoadMaster, you can choose whether to use Kemp-provided rules, custom
rules which can be uploaded or a combination of both.

For a more detailed overview of the WAF feature, please refer to the WAF section in the Kemp
LoadMaster, Product Overview.

For instructions on how to configure the various WAF options in the LoadMaster, refer to the Kemp
Web Application Firewall, Feature Description.

1.1 Document Purpose
The purpose of this document is to provide some guidance on how to write your own custom WAF
rules. These custom rules can be uploaded to the LoadMaster and assigned to Virtual Services as
needed.

1.2 Intended Audience
This document is intended to be read by anyone who is interested in finding out more about how to
write custom WAF rules.

kemp.ax 5 Copyright 2002-2021, Kemp Technologies, All Rights Reserved

WAF Rule Writing Guide

1 Introduction

1.3 Related Firmware Version
Published with LMOS version 7.2.48.4 LTS. This document has not required substantial changes
since 7.2.48.4 LTS. However, the content is in sync with the latest LoadMaster LTS firmware.

kemp.ax 6 Copyright 2002-2021, Kemp Technologies, All Rights Reserved

WAF Rule Writing Guide

1 Introduction

2 ModSecurity Rule Writing
The ModSecurity Reference Manual should be consulted in any cases where questions arise relating
to the syntax of commands: https://github.com/SpiderLabs/ModSecurity/wiki/Reference-Manual

In terms of rule writing, the main directive to know is SecRule, which is used to create rules and thus
does most of the work.

Every rule defined by SecRule conforms to the same format, as below:

SecRule VARIABLES OPERATOR \ [TRANSFORMATION_FUNCTIONS,ACTIONS]

The rule consists of four parts:

VARIABLES: Tells the WAF engine where to look in the transactional data.

OPERATOR: Tells the WAF engine how to process the variable data.

TRANSFORMATION_FUNCTIONS: Tells the WAF engine how to normalize data before an operator
is applied.

ACTIONS: Tells the WAF engine what to do if a rule matches.

The four parts are explained in the sections below.

2.1 Variables
This specifies which places to check in a HTTP transaction. Examples of variables include:

ARGS – all arguments including the POST payload

REQUEST_METHOD – request method used in the transaction

kemp.ax 7 Copyright 2002-2021, Kemp Technologies, All Rights Reserved

WAF Rule Writing Guide

2 ModSecurity Rule Writing

https://github.com/SpiderLabs/ModSecurity/wiki/Reference-Manual

REQUEST_HEADERS – can be used as either a collection of all of the request headers or can be
used to inspect selected headers

Etc. The full list of variables is available here:
https://github.com/SpiderLabs/ModSecurity/wiki/Reference-Manual#Variables

2.2 Operator
This specifies a regular expression, pattern or keyword to be checked in the variable(s). Operators
begin with the @ character. The full list of operators is available here:
https://github.com/SpiderLabs/ModSecurity/wiki/Reference-Manual#Operators

2.3 Transformation Functions
There are a number of transformation functions that can be performed, for example:

Anti-evasion (such as lowercase, normalisePath, removeNulls, replaceComments,
compressWhitespace)

Decoding (such as base64Decode, hexDecode, jsDecode, urlDecodeUni)

Encoding (such as base64Encode, hexEncode)

Hashing (such as sha1, md5)

2.4 Actions
This specifies what to do if the rule matches. Actions are defined in seven categories, listed below:

Disruptive – used to allow ModSecurity to take an action, for example allow or block

Flow – affect the flow, for example skip

Meta-data – used to provide more information about rules

Variable – used to set, change and remove variables

Logging – used to influence the way logging takes place

Special – used to provide access to another class of functionality

Miscellaneous – contain actions that do not belong in any other groups.

If no actions are provided, default actions apply as per SecDefaultAction (phase:2,log,auditlog,pass).
The full list of actions are available here:

https://github.com/SpiderLabs/ModSecurity/wiki/Reference-Manual#Actions

kemp.ax 8 Copyright 2002-2021, Kemp Technologies, All Rights Reserved

WAF Rule Writing Guide

2 ModSecurity Rule Writing

https://github.com/SpiderLabs/ModSecurity/wiki/Reference-Manual#Variables
https://github.com/SpiderLabs/ModSecurity/wiki/Reference-Manual#Operators
https://github.com/SpiderLabs/ModSecurity/wiki/Reference-Manual#Actions

When constructing the rules, you can specify at what phase the rule should run. Specifying the
correct phase can be beneficial in order to reduce CPU processing.

2.5 Rule Syntax
The following rule looks at the request Uniform Resource Identifier (URI) and tries to match the
regular expression pattern <script> against it. The double quotes are used because the second
parameter contains a space:

SecRule REQUEST_URI “@rx <script>”

To split a long line into two, use a single backslash character, followed by a new line:

SecRule ARGS KEYWORD \

phase:1,t:none,block

Multiple variables can be used in a rule as long as they are separated using the pipe character, for
example:

SecRule REQUEST_URI|REQUEST_PROTOCOL <script>

The SecDefaultAction directive is used if no actions are defined for a rule. For example, the following
rule:

SecRule ARGS D1

Is equivalent to:

SecRule ARGS D1 phase2:log:auditlog,pass

2.5.1 Rule Example 1 – Cross Site Scripting (XSS) Attack

The following rule is used to avoid XSS attacks by checking for a <script> pattern in the request
parameters and header and generates an ‘XSS Attack’ message with a 404 status response.

SecRule ARGS|REQUEST_HEADERS “@rx <script>” id:101,msg: ‘XSS
Attack’,severity:ERROR,deny,status:404

2.5.1.1 Variables

Details about the variables in this rule example are in the table below:

Variable Definition

ARGS Request parameters

REQUEST_HEADERS All of the request headers

kemp.ax 9 Copyright 2002-2021, Kemp Technologies, All Rights Reserved

WAF Rule Writing Guide

2 ModSecurity Rule Writing

2.5.1.2 Operator

“@rx <script>” – Performs a regular expression match of the pattern (in this case <script>) provided
as a parameter.

2.5.1.3 Actions

Details of the actions contained in this rule example are provided in the table below:

Action(s) Description

id, msg, severity, deny,
status

These are all of the actions to be performed if the pattern is
matched.

id:101
The unique ID that is assigned to the rule (or chain) in which it

appears.

msg: “XSS Attack”
The custom message (i.e. XSS Attack) assigned to the rule (or chain)

in which it appears.

Severity:ERROR

The severity of the rule. Severities include:

EMERGENCY (0)

ALERT (1)

CRITICAL (2)

ERROR (3)

WARNING (4)

NOTICE (5)

INFO (6)

DEBUG (7)

deny
This stops rule processing and intercepts transaction. This is a

disruptive action.

status:404
This specifies the response status code (404) with actions deny and

redirect.

2.5.2 Rule Example 2 – Whitelist IP Address

The following example shows how to whitelist an IP address to bypass the ModSecurity engine:

kemp.ax 10 Copyright 2002-2021, Kemp Technologies, All Rights Reserved

WAF Rule Writing Guide

2 ModSecurity Rule Writing

SecRule REMOTE_ADDR “@ipMatch 192.168.1.101” \

id:102,phase:1,t:none,nolog,pass,ctl:ruleEngine=off

2.5.2.1 Variables

Variable Name: REMOTE_ADDR

Variable Definition: The IP address of the remote client

2.5.2.2 Operator

“@ipMatch 192.168.1.101” – Performs an IPv4 or IPv6 match of the REMOTE_ADDR variable data. In
this care – this is the whitelisted IP address.

2.5.2.3 Actions

Action(s) Description

id:101 The unique ID that is assigned to the rule (or chain) in which it appears.

phase:1

Places the rule (or chain) in Phase 1 processing. There are five phases,
including:

Request Headers (1)

Request Body (2)

Response Headers (3)

Response Body (4)

Logging (5)

t:none

Indicates that no action is used to transform the value of the variable used
in the rule before matching. For example, t:utf8toUnicode converts all

UTF-8 character sequences to Unicode to assist in input normalization.

nolog Prevents rule matches from appearing in both the error and audit logs.

pass Continues processing with the next rule in spite of a successful match.

ctl:ruleEngine=off

This action changes ModSecurity configuration on a transient, per-
transaction basis. This only affects the transaction in which the action is

executed. In this case, the ModSecurity rule engine is turned off.

kemp.ax 11 Copyright 2002-2021, Kemp Technologies, All Rights Reserved

WAF Rule Writing Guide

2 ModSecurity Rule Writing

2.5.3 Rule Example 3 – Chaining Rules

Chained rules allow for more complex rule matches where a number of different VARIABLES are used
to create a better rule and to help prevent false positives. In programming language concepts –
think of chained rules as somewhat similar to AND conditional statements. The actions specified in
the first portion of the chained rule will only be triggered if all of the variable checks return positive
hits. If one aspect of the chained rule is negative, then the entire rule chain is negative. The most
unique portion should be specified on the first line – this will reduce the number of “normal”
requests that will have to be evaluated against the rest of the chained rule set.

In addition to using a number of different VARIABLES in the one rule, it is also possible to chain more
than one rule. Below is an example of chaining two rules. In this example, the first rule checks if the
username (ARGS:username) for the string admin (streq admin) using a string comparison. If the first
rule holds true, the second rule is activated which denies all requests that are not from the
REMOTE_ADDR 192.168.1.111 IP Address (!streq 192.168.1.111).

SecRule ARGS:username “@streq admin” chain,deny

SecRule REMOTE_ADDR “!streq 192.168.1.111”

2.5.4 Rule Example 4 – Shellshock Bash Attack

This section shows an example of the rules requires to mitigate the Shellshock Bash attack. There
are two rules needed in this case. Details of both rules are provided in the sections below.

2.5.4.1 First Rule

This is the first rule:

SecRule REQUEST_LINE|REQUEST_HEADERS|REQUEST_HEADERS_NAMES "@contains () {"
"phase:1,id:'2100080',block,t:none,t:utf8toUnicode,t:urlDecodeUni,t:compressWhitespace
,msg:'SLR: Bash ENV Variable Injection Attack',tag:'CVE-2014-
6271',tag:'http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-
6271',tag:'https://securityblog.redhat.com/2014/09/24/bash-specially-crafted-
environment-variables-code-injection-attack/'"

2.5.4.1.1 Variables

Details about the variables in this example rule are provided in the table below:

Variable Definition

REQUEST_LINE
This variable holds the complete request line sent to the server (including the

request method and HTTP version information).

REQUEST_
HEADERS All of the request headers

REQUEST_
HEADERS_NAMES All of the names of the request headers.

kemp.ax 12 Copyright 2002-2021, Kemp Technologies, All Rights Reserved

WAF Rule Writing Guide

2 ModSecurity Rule Writing

2.5.4.1.2 Operator

"@contains () {" – Checks the REQUEST_LINE|REQUEST_HEADERS|REQUEST_HEADERS_NAMES
variables for the string ‘() {’ and returns true if found.

2.5.4.1.3 Actions

Action(s) Description

phase:1

Places the rule (or chain) in Phase
1 processing. There are five

phases, including:

Request Headers (1)

Request Body (2)

Response Headers (3)

Response Body (4)

Logging (5)

id:'2100080'

The unique ID that is assigned to
this rule (or chain) in which it

appears.

block

This performs the disruptive
action defined by the previous

SecDefaultAction. This allows rule
writers to request a blocking

action without specifying how the
blocking is to be done. The
SecRuleUpdateActionById

directive allows you to override
how a rule handles blocking.
Please refer to the Rule Block

Function section for further
details.

t:none

Indicates that no action is used to
transform the value of the

variable used in the rule before
matching.

kemp.ax 13 Copyright 2002-2021, Kemp Technologies, All Rights Reserved

WAF Rule Writing Guide

2 ModSecurity Rule Writing

Action(s) Description

t:utf8toUnicode

Converts all UTF-8 character
sequences to Unicode to assist in

input normalization.

t:urlDecodeUni

Decodes a URL-encoded input
string with support for the

Microsoft-specific %u encoding.

t:compressWhitespace

Converts any of the whitespace
characters (0x20, \f, \t, \n, \r, \v,

0xa0) to spaces (ASCII 0x20),
compressing multiple consecutive

space characters into one.

msg:'SLR: Bash ENV Variable Injection
Attack',tag:'CVE-2014-6271'

The custom message (i.e. XSS
Attack) assigned to the rule (or

chain) in which it appears.

tag:'http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2014-6271'

tag:'https://securityblog.redhat.com/2014/09/24/bash-
specially-crafted-environment-variables-code-

injection-attack/'

Assigns a tag (category) to a rule
(or chain). This is metadata

allows easy automated
categorization of events. Multiple
tags can be specified on the same

rule.

2.5.4.2 Second Rule

The second rule is as follows:

SecRule REQUEST_BODY "@contains () {"
"phase:2,id:'2100081',block,t:none,t:utf8toUnicode,t:urlDecodeUni,t:compressWhitespace
,msg:'SLR: Bash ENV Variable Injection Attack',tag:'CVE-2014-
6271',tag:'http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-
6271',tag:'https://securityblog.redhat.com/2014/09/24/bash-specially-crafted-
environment-variables-code-injection-attack/'"

2.5.4.2.1 Variables

Variable Name: REQUEST_BODY

Variable Definition: All of the request body.

kemp.ax 14 Copyright 2002-2021, Kemp Technologies, All Rights Reserved

WAF Rule Writing Guide

2 ModSecurity Rule Writing

2.5.4.2.2 Operator

"@contains () {" – Checks the REQUEST_BODY variable for the string ‘() {’ and returns true if found.

2.5.4.2.3 Actions

Action(s) Description

phase:2

Places the rule (or chain) in Phase
2 processing. There are five

phases, including:

Request Headers (1)

Request Body (2)

Response Headers (3)

Response Body (4)

Logging (5)

id:'2100081'

The unique ID that is assigned to
this rule (or chain) in which it

appears.

block

This performs the disruptive
action defined by the previous

SecDefaultAction. This allows rule
writers to request a blocking

action, but without specifying
how the blocking is to be done.
The SecRuleUpdateActionById

directive allows you to override
how a rule handles blocking.
Please refer to the Rule Block

Function section for further
details.

t:none

Indicates that no action is used to
transform the value of the

variable used in the rule before
matching.

kemp.ax 15 Copyright 2002-2021, Kemp Technologies, All Rights Reserved

WAF Rule Writing Guide

2 ModSecurity Rule Writing

Action(s) Description

t:utf8toUnicode

Converts all UTF-8 character
sequences to Unicode to assist in

input normalization.

t:urlDecodeUni

Decodes a URL-encoded input
string with support for the

Microsoft-specific %u encoding.

t:compressWhitespace

Converts any of the whitespace
characters (0x20, \f, \t, \n, \r, \v,

0xa0) to spaces (ASCII 0x20),
compressing multiple consecutive

space characters into one.

msg:'SLR: Bash ENV Variable Injection
Attack',tag:'CVE-2014-6271'

The custom message (i.e. XSS
Attack) assigned to the rule (or

chain) in which it appears.

tag:'http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2014-6271'

tag:'https://securityblog.redhat.com/2014/09/24/bash-
specially-crafted-environment-variables-code-

injection-attack/'

Assigns a tag (category) to a rule
(or chain). This is metadata which

allows easy automated
categorization of events. Multiple
tags can be specified on the same

rule.

2.6 Kemp WUI Settings
In the LoadMaster Web User Interface (WUI), WAF settings can be configured for each individual
Virtual Service.

kemp.ax 16 Copyright 2002-2021, Kemp Technologies, All Rights Reserved

WAF Rule Writing Guide

2 ModSecurity Rule Writing

In the WAF Options section of the Virtual Service modify screen (Virtual Services > View/Modify
Services > Modify), there is a drop-down list called Default Operation. The Default Operation can be
set to Audit Only or Block Mode.

The Audit Only mode of operation sets the SecDefaultAction to phase:2,log,auditlog,pass.

The Block Mode of operation sets the SecDefaultAction to phase:2,log,auditlog,block,drop.

2.7 Rule Block Function
The rule block function is quite complicated. This section offers further explanation of the rule block
function. The following example has been taken from
https://github.com/Spiderlabs/ModSecurity/wiki/Reference-Manual#block and further explanatory
text has been added.

The block action is essentially a placeholder that is intended to be used by rule
writes to request a blocking action, but without specifying how the blocking is to be
done. The SecDefaultAction command specifies how the blocking is to be done. The block
action is a placeholder that will be replaced by the action from the last
SecDefaultAction in the same context.

Block Example 1

The following example shows the SecDefaultAction set to deny. The second rule will “deny” because
the SecDefaultAction is set to deny.

kemp.ax 17 Copyright 2002-2021, Kemp Technologies, All Rights Reserved

WAF Rule Writing Guide

2 ModSecurity Rule Writing

https://github.com/Spiderlabs/ModSecurity/wiki/Reference-Manual#block

SecDefaultAction phase:2,deny,id:101,status:403,log,auditlog

SecRule ARGS attack2 phase:2,pass,id:103

SecRule ARGS attack1 phase:2,block,id:102

Block Example 2

The following example shows the usage of the SecRuleUpdateActionById command to override how
a rule handles blocking. The SecRuleUpdateActionById command allows a rule to be reverted back
to the previous SecDefaultAction. In this example, the first rule (SecRule ARGS attack1
phase:2,deny,id:1) would deny based on meeting the successful conditions associated with the rule.

By using the SecRuleUpdateActionById against rule Id 1 and indicating block, we are associating the
first rule action to that of the SecDefaultAction which is pass. So in the case, the first rule would pass
based on meeting the successful conditions associated with the rule; it would not deny.

SecDefaultAction phase:2,pass,log,auditlog

SecRule ARGS attack1 phase:2,deny,id:1

SecRuleUpdateActionById 1 block

kemp.ax 18 Copyright 2002-2021, Kemp Technologies, All Rights Reserved

WAF Rule Writing Guide

2 ModSecurity Rule Writing

3 Managing Custom WAF Rules
in the LoadMaster
3.1 Add a Custom Rule
Follow the steps below to find out how to add custom WAF rules in the Web User Interface (WUI) of
the LoadMaster:

1. In the main menu, select Virtual Services > WAF Settings.

2. To upload custom rules, click Choose File in the Installed Rules section.

Individual rules can be uploaded as .conf files, or you can load
a package of rules in a tar.gz file.

3. Browse to and select the rules to be uploaded.

kemp.ax 19 Copyright 2002-2021, Kemp Technologies, All Rights Reserved

WAF Rule Writing Guide

3 Managing Custom WAF Rules in the LoadMaster

4. To upload any additional data files, click Choose File in the Custom Rule Data section.

The additional files are for the rules’ associated data files. If
using a Tarball, the rules and data files can be packaged
together.

5. Browse to and select the additional data files.

6. Click Add Ruleset.

The rules will now be available to assign within the Virtual Services modify screen (Virtual Services >
View/Modify Services > Modify). Refer to the Assigning Custom Rules to a Virtual Service section to
find out how to configure the Virtual Service.

3.2 Delete/Download a Custom Rule or Data File

Custom rules and data files can be deleted or downloaded by clicking the relevant buttons.

If a rule is assigned to a Virtual Service, it will not be available
for deletion.

kemp.ax 20 Copyright 2002-2021, Kemp Technologies, All Rights Reserved

WAF Rule Writing Guide

3 Managing Custom WAF Rules in the LoadMaster

4 Assigning Custom Rules to a
Virtual Service
Custom rules can be assigned as needed to each individual Virtual Service. Follow the steps below to
assign.

1. In the main menu of the LoadMaster WUI, select Virtual Services > View/Modify Services.

2. Click Modify on the relevant Virtual Service.

3. Expand the WAF Options section.

4. Select Enabled.

kemp.ax 21 Copyright 2002-2021, Kemp Technologies, All Rights Reserved

WAF Rule Writing Guide

4 Assigning Custom Rules to a Virtual Service

A message will be displayed next to the Enabled check box
displaying how many WAF-enabled Virtual Services exist and it
will also display the maximum number of WAF-enabled Virtual
Services that can exist. If the maximum number of WAF-enabled
Virtual Services have been reached, the Enabled check box will
be greyed out.

5. Assign rulesets by ticking them in the Available Rulesets section.

6. Individual rules can be enabled/disabled per ruleset by ticking/unticking them in the box
on the right.
Rules can be filtered by entering a filter term in the Rule Filter text box.
Clicking Clear All will disable all rules for the selected ruleset.
Clicking Set All will enable all rules for the selected ruleset.
Clicking the Reset button will disable all rules and rulesets.

7. When finished enabling/disabling the relevant rulesets and rules, click Apply.

4.1 WAF Misconfigured State

On the View/Modify Services screen in the LoadMaster WUI, the Status of each Virtual Service is
displayed. If the WAF for a particular Virtual Service is misconfigured, for example if there is an issue
with a rule file, the status changes to WAF Misconfigured and turns to red. If the Virtual Service is in
this state, all traffic is blocked. WAF can be disabled for that Virtual Service to stop the traffic being
blocked, if required, while troubleshooting the problem.

kemp.ax 22 Copyright 2002-2021, Kemp Technologies, All Rights Reserved

WAF Rule Writing Guide

4 Assigning Custom Rules to a Virtual Service

5 Backing Up and Restoring
WAF Configuration

A backup of the LoadMaster configuration can be taken by going to System Administration >
Backup/Restore and clicking Create Backup File.

The configuration can be restored from this screen also. Please keep in mind that the Virtual Service
settings can be restored by selecting VS Configuration and the rules can be restored by selecting
LoadMaster Base Configuration.

A WAF configuration can only be restored onto a LoadMaster
with an WAF license.

kemp.ax 23 Copyright 2002-2021, Kemp Technologies, All Rights Reserved

WAF Rule Writing Guide

5 Backing Up and Restoring WAF Configuration

References
Unless otherwise specified, the following documents can be found at
http://kemptechnologies.com/documentation.

ModSecurity Reference Manual
https://github.com/SpiderLabs/ModSecurity/wiki/Reference-Manual

Kemp Web Application Firewall, Feature Description

Kemp LoadMaster, Product Overview

kemp.ax 24 Copyright 2002-2021, Kemp Technologies, All Rights Reserved

WAF Rule Writing Guide

References

http://www.kemptechnologies.com/documentation
https://github.com/SpiderLabs/ModSecurity/wiki/Reference-Manual

Last Updated Date
This document was last updated on 25 April 2021.

kemp.ax 25 Copyright 2002-2021, Kemp Technologies, All Rights Reserved

WAF Rule Writing Guide

Last Updated Date

	1 Introduction
	1.1 Document Purpose
	1.2 Intended Audience
	1.3 Related Firmware Version

	2 ModSecurity Rule Writing
	2.1 Variables
	2.2 Operator
	2.3 Transformation Functions
	2.4 Actions
	2.5 Rule Syntax
	2.5.1 Rule Example 1 – Cross Site Scripting (XSS) Attack
	2.5.1.1 Variables
	2.5.1.2 Operator
	2.5.1.3 Actions

	2.5.2 Rule Example 2 – Whitelist IP Address
	2.5.2.1 Variables
	2.5.2.2 Operator
	2.5.2.3 Actions

	2.5.3 Rule Example 3 – Chaining Rules
	2.5.4 Rule Example 4 – Shellshock Bash Attack
	2.5.4.1 First Rule
	2.5.4.1.1 Variables
	2.5.4.1.2 Operator
	2.5.4.1.3 Actions

	2.5.4.2 Second Rule
	2.5.4.2.1 Variables
	2.5.4.2.2 Operator
	2.5.4.2.3 Actions

	2.6 Kemp WUI Settings
	2.7 Rule Block Function

	3 Managing Custom WAF Rules in the LoadMaster
	3.1 Add a Custom Rule
	3.2 Delete/Download a Custom Rule or Data File

	4 Assigning Custom Rules to a Virtual Service
	4.1 WAF Misconfigured State

	5 Backing Up and Restoring WAF Configuration
	References
	Last Updated Date

