

The Security Building Blocks of TLS
Technical White Paper

Copyright © 2002 --- 2014 KEMP Technologies, Inc.

All Rights Reserved.

(Corporate HQ) 600 Fifth Ave. New York, NY 10020 | KEMPTechnologies.com

Introduction
System and network administrators regularly have to deploy and configure the TLS
(Transport Layer Security) protocol as a method of securing communications on
devices such as load balancers and web servers. As they deploy TLS on their
application delivery platforms they may find themselves presented with
configuration options for the cryptography to be used. This paper takes a look the
underlying cryptographic building blocks and security tools and describes how they
are used by TLS.

The TLS protocol can use a range of algorithms for authentication, encryption and
key exchange known as a cipher suite. During the establishment of a TLS session,
the parties will negotiate which of the TLS defined cipher suites to use.

TLS Requirement Implementation
Securely establishing a secret key
between two communicating parties

RSA and Diffe-Hellman (DH) algorithms
are the most common method of
securely establishing the once off
secret for the TLS session.

TLS supports the use of a pre-shared
key where no key establishment is
required.

Authenticating and trusting the other
party

Digital certificates are used to establish
trust. Certificates can be provided by
clients and servers although in most
implementations, only the server
provides a certificate as the client will
be anonymous or authenticate using
an alternative method such as a
password.

Protecting the confidentiality of data in
transit

Encryption algorithms such as AES
make sure that data is not visible to
third parties. These algorithms are
generally known as ‘Symmetric’ ciphers
as the same key is used by both parties
for encryption and decryption.
This is the key that is established
securely between the parties using
RSA, DH or pre-shared protocols.

By Maurice McMullin,
Product Manager

Subpage heading White Paper

Copyright © 2002 --- 2015 KEMP Technologies, Inc.

All Rights Reserved.

(Corporate HQ) 600 Fifth Ave. New York, NY 10020 | KEMPTechnologies.com

Cipher suites in TLS are named in the format TLS_DHE_RSA_WITH_AES_256_CBC_SHA
which includes references to the key exchange mechanism (DHE), the authentication
(RSA), the encryption algorithm and options (AES_256_CBC) along with the hashing
function (SHA).

About the TLS Protocol
TLS (Transport Layer Security) is a security protocol that is used extensively on the
Internet to authenticate and secure communications. TLS is an evolution from SSL
and is an IETF (Internet Engineering Task Force) standard. SSL was originally
developed by Netscape and has gone through multiple versions and a name change
to TLS in 1999. The current TLS version is 1.2 with a draft 1.3 version currently in
development. Given the nature and value of communications that we have on the
internet, there is an expectation that our communications are private and that other
parties in the communications are who they say they are. It is these two basic
requirements that TLS addresses by providing a way for parties in a conversation to
verify each other and to communicate privately. The most common TLS application
is securing client connections to websites where the protocol can verify the identity
of the website and secure the communications.

To deliver the goal of authenticated and private communication, the TLS protocol
uses a range of security fundamentals. How these fundamental building blocks work
is well known and they are continuously under examination by security researchers
and other entities to identify weaknesses. Where weaknesses are identified, the
security community will issue a fix or a recommendation to deprecate the use. This
openness and continuous assessment has identified many vulnerabilities ranging
from weaknesses in TLS implementation (e.g. POODLE) through to key size
weaknesses due to brute force attacks.

The Security Fundamentals

The RSA Algorithm
The RSA algorithm may be used within the TLS protocol for authentication and key
exchange. The RSA asymmetric encryption cipher uses two keys that are
mathematically related so that content encrypted by one key can only be decrypted
by the other. What this means in practice is that one of the keys can be made public
and used by anybody to encrypt messages to the owner of the other key which is
kept private. This is known as Public Key or Asymmetric cryptography.

This private key (kept secret) and public key (available to everyone) allow two
parties to securely communicate as shown in the following communication between
Bob and Alice.

Subpage heading White Paper

Copyright © 2002 --- 2015 KEMP Technologies, Inc.

All Rights Reserved.

(Corporate HQ) 600 Fifth Ave. New York, NY 10020 | KEMPTechnologies.com

Figure 1 - Message encryption using RSA

Bob’s public key is available to everybody so Alice uses this key to encrypt a
message and send it to Bob. Bob uses his private key to decrypt the message sent
by Alice.

While RSA may be used for both authentication and secure key establishment, the
general recommendation is to use Diffe-Hellman for secure key establishment. The
reasoning for this is that if a 3rd party gains access to the RSA key, they can decrypt
any previously recorded sessions as the RSA key is always the same. The Diffe-
Hellman protocol can be used to create different keys (known as ephemeral keys)
which are unique to each session. This prevention of playback by using ephemeral
keys is known as ‘forward secrecy’.

The RSA protocol can also be used for digital signing when a known message
encrypted by a private key can be decrypted by a public key. A successful decryption
by the public key shows that the private key is held by the encrypting (signing)
entity. See the section on Hashing Functions for an example of digital signing.

The private key should be stored securely as a compromised key would allow third
parties to masquerade as the owner of the key. See the section on key security to
understand how private keys may be protected.

The RSA algorithm was developed by Ron Rivest, Adi Shamir and Leonard Adleman
who went on to from RSA Security to commercially exploit the algorithm. The
algorithm was patented in the US until September 2000 while it was never patented
globally.

Diffie-Hellman Key Exchange
The Diffie-Hellman (DH) key exchange algorithm allows two parties, who do not
know each other, to securely exchange a key even if a third party is observing all
their communications. The magic of DH is that it does not actually encrypt any data
yet it allows each party to create the same key based on the exchange of some
unencrypted data.

Alice Bob

Message

Message Encrypted
with Bob’s public key

Encrypted Message

Encrypted Message

Message decrypted
with Bob’s private key

Decrypted Message

Encrypted message
delivered to Bob

Subpage heading White Paper

Copyright © 2002 --- 2015 KEMP Technologies, Inc.

All Rights Reserved.

(Corporate HQ) 600 Fifth Ave. New York, NY 10020 | KEMPTechnologies.com

Rather than delve into the mathematics, the example below uses color to explain in
the abstract how DH key exchange works. The assumption is that it is difficult to
unmix the colors that are transmitted by removing the common color agreed in the
first step.

Figure 2 - Diffe-Hellman key exchange

Alice gets to the secret color by adding her private color (RED) to Bob’s mix (PURPLE
+ AZURE).
Bob gets to the secret color by adding his private color (AZURE) to Alice’s mix
(PURPLE + RED).
In each case the secret is the product of PURPLE + AZURE + RED.

Even though Eve observed (and possibly recorded) all the communications, she
cannot deduce the secret.

Within TLS, the DH algorithm is normally used to create ephemeral (one-time) keys
while RSA is used for authentication of the parties as in the
TLS_DHE_RSA_WITH_AES_256_CBC_SHA cipher suite.

Hashing Functions
A hashing function is a one-way transform where a piece of data (known as the
message) when passed through the function will produce an output (known as a
hash or digest) of a given size. The one-way nature of this mathematical trapdoor

Alice Bob

Eve

+

= =

+

++

==

Bob & Alice agree a common color (PURPLE)
which is seen by Eve

Bob & Alice create a secret color which is not transmi�ed
Alice’s color is RED Bob’s color is AZURE

Bob & Alice mix the common and secret colors
and transmit this new mixed color to each other.
Eve can see the colors being transmi�ed

Bob & Alice add their secret color to the mix
they received to create a new color which
Eve has not seen.

This new color is the secret key.

Subpage heading White Paper

Copyright © 2002 --- 2015 KEMP Technologies, Inc.

All Rights Reserved.

(Corporate HQ) 600 Fifth Ave. New York, NY 10020 | KEMPTechnologies.com

means that it is not possible to derive the original message from the digest. As can
be seen from the following table for a 128bit MD5 hash function, even the simple
addition of a comma to the message produces a vastly different digest

Message MD5 --- 128bit Digest
Lorem ipsum dolor sit amet fea80f2db003d4ebc4536023814aa885
Lorem ipsum dolor sit amet, 059e5714948c77a56a5376310e9dc0c9

Hashing functions have many applications including creating file checksums,
password storage, indexing and fingerprinting. In cryptography, hashing functions
are used to ensure the integrity of communications and in digital signing.

With a digital signature, the sending party will create a hash of the content being
signed and encrypt this with their private (RSA) key. The recipient of the message
can verify that the message came from the person who possessed the private key by
comparing the hash received (decrypted by the public key) with the locally
calculated hash. The example below shows how Alice sends a signed message to
Bob who validates the identity of the sender.

Figure 3 - Signing a message using RSA

Alice passes the message through the hashing function and encrypts it with her
private key. The message (unencrypted in this example) and the hash are delivered
to Bob who calculates the hash from the message and decrypts the hash provided
by Alice using her public key. If the two hashes match then Bob can be assured that:

1. Alice created the message - only her private key could have encrypted the
hash so that her public key could decrypt it

2. The message was not altered in transit --- Because the decrypted hash
matches, the content has not changed since it was hashed by Alice

Alice

Message

Hashing Func�on

Message Hash

Hash encrypted with
Alice’s private key

Bob

A7Y82SST0KML

Q2WU5N1LL0Q2

A7Y82SST0KML

Q2WU5N1LL0Q2

A7Y82SST0KML

Q2WU5N1LL0Q2

Message Delivered
with encrypted hash

Message hashed and
result compared with

decrypted Hash to
validate signature

Subpage heading White Paper

Copyright © 2002 --- 2015 KEMP Technologies, Inc.

All Rights Reserved.

(Corporate HQ) 600 Fifth Ave. New York, NY 10020 | KEMPTechnologies.com

This is how hashes and public key algorithms can be used for authentication and to
provide protection against tampering when in transit.

Some of the earlier implementations of hashing functions such (SHA-1) have had
weaknesses identified and are no longer considered safe for use.

Hashing is also used to provide security for storing passwords where rather storing
passwords in cleartext, they are hashed before they are stored. Passwords can be
validated by hashing the password provided and comparing with the stored hash.
Advances in cryptoanalysis and computing power make large files of hashed
passwords susceptible to cracking by brute force or dictionary attacks. To prevent
this type of attack (e.g. where a hacker has stolen a file of hashed passwords)
additional random cleartext is added to the password (known as a ‘salt’).

Symmetric Ciphers
While the RSA algorithm addresses the challenge of establishing a secure
communications channel, it is a computationally intensive and is not suitable for
securing large volumes of data. Symmetric ciphers on the other hand are
computationally efficient but use a single key (a shared secret) which must be
agreed by the parties before secure communications can begin. In common with
many other secure communication protocols, TLS will use RSA (or DH) to establish
the initial secure communications channel over which the parties can then safely
share the symmetric cipher key.

With symmetric ciphers, the same key is used for encryption and decryption and can
encrypt data one byte at a time (a Stream Cipher) or in blocks (Block Cipher).

Figure 4 - Symmetric encryption using a shared key

While stream ciphers are generally more efficient than block ciphers, block ciphers
can add additional security by implementing Cipher Block Chaining (CBC) where a
block of data to be encrypted is altered based on the previous block normally
through an operation such as an XOR.

Alice Bob

Subpage heading White Paper

Copyright © 2002 --- 2015 KEMP Technologies, Inc.

All Rights Reserved.

(Corporate HQ) 600 Fifth Ave. New York, NY 10020 | KEMPTechnologies.com

Elliptic Curve Cryptography
Elliptic curve cryptography (ECC) is a public key cryptosystem that provides similar
levels of security as RSA but at much smaller key sizes and reduced computational
overhead. Like RSA, it is a mathematical trapdoor where getting from A to B is easy,
while getting from B to A is hard. Cryptography experts see ECC as being the best
long-term public key algorithm as research and computational advances continue to
identify weaknesses and brute force exploits in the RSA and DH algorithms.

Digital Certificates
Digital certificates are used by TLS to provide a method of validating the authenticity
of a public key being provided by a server or client. As with certificates in the real
world, they are of no value unless the certification authority that issues them is
trusted. Most web browsers are pre-populated with a range of trusted certification
authorities which means that the browser can transparently trust any certificate
issued by these authorities.

When a user visits www.example.com from their browser over a TLS encrypted
connection, the certificate provided by www.example.com will contain a blob of
information that includes the URL of the website and the public key of that site. The
browser will check to see if this blob was signed by a trusted certification authority
(CA) and warn the user if there is a problem.

The X.509 notation used to define digital certificates allows for a wide range of
content and attributes within a certificate. These would normally include validity
dates and valid certificate uses (e.g. Mail, TLS).

The following is a simplified view of how a digital certificate is issued by a CA.

Figure 5 - Certificate signing process

www.example.com

*Sj1^nLL07Az61dd4

www.example.com

*Sj1^nLL07Az61dd4

www.example.com

*Sj1^nLL07Az61dd4

CA Informa�onCA Informa�on

&*ShQ9=89TT!An

WX&12(lprTLDdV

WX&12(lprTLDdV
Public Key and website URL sent by
website admin to the Cer�fica�on
Authority (CA) as a signing request

The CA hashes the URL and public key
provided along with CA informa�on and
encrypts the hash with the CA Private Key

The Cer�ficate construct consists of
a signed blob of informa�on that
includes the original URL & public
key along with the CA Informa�on

Subpage heading White Paper

Copyright © 2002 --- 2015 KEMP Technologies, Inc.

All Rights Reserved.

(Corporate HQ) 600 Fifth Ave. New York, NY 10020 | KEMPTechnologies.com

Any cert issued by that CA can be validated by verifying the signature against the
trusted CA signature. To an end-user this trust hierarchy is presented as a certificate
chain with the self-signed CA certificate at the top of the chain. The CA may issue
certificates to intermediate CA’s which in turn issue certificates.

Figure 6 - Example of a Certificate Hierarchy in a
browser

For example, the site
mail.google.com uses a digital
certificate that was issued by
and intermediate certificate
authority called ‘Google Internet
Authority G2’ which in turn was
issued by the ‘GeoTrust Global
CA’ certificate authority.

This hierarchy and trust
relationship is called a Public
Key Infrastructure (PKI). A PKI
includes mechanisms for
revocation of certificates (OCSP
and CRLs) and processes for
requesting the issuance of
certificates.

By trusting the top---level
GeoTrust CA, all the
intermediate CAs and
certificates issued by those CAs
are trusted.

Random Number Generators
Random number generation (RNG) is used by many security protocols and
weaknesses in RNG can lead to exploits against the protocol using the random
numbers. Random numbers are used by symmetric ciphers to create encryption
keys while public key and key exchange algorithms need to generate random prime
numbers. Randomness can be generated from naturally random sources such as
background cosmic radiation or by a pseudo-random software algorithm.

Establishing Secure Communications

The TLS Handshake
The TLS protocol defines how the client and server interact to establish a secure
authenticated communications channel. Among the tasks to complete during this
session establishments are agreeing on the cipher suite to use. TLS includes a range
of predefined cipher suites which define the key exchange and encryption protocols
to use.

Subpage heading White Paper

Copyright © 2002 --- 2015 KEMP Technologies, Inc.

All Rights Reserved.

(Corporate HQ) 600 Fifth Ave. New York, NY 10020 | KEMPTechnologies.com

The cipher suite TLS_RSA_WITH_AES_256_CBC_SHA indicates that that the suite
uses RSA for key exchange and authentication while a 265bit AES algorithm in CBC
mode is used as the symmetric encryption protocol with SHA as the hashing
algorithm.

TLS_DHE_RSA_WITH_AES_256_CBC_SHA256 indicates the use of Ephemeral Diffe-
Hellman for key exchange, RSA for authentication (Certificates) and 256bit AES in
CBC mode with hashing performed by 256Bit SHA.

TLS also offers NULL encryption cipher suites (e.g. in TLS_RSA_WITH_NULL_MD5).

The following table provides an overview of how a client and server establish a
secure communications channel with a TLS handshake.

 Client Server
ClientHello Message

This message tells the
server which TLS Cipher
Suites are supported by the
client and provides a client
generated random value.
The ClientHello message
also indicates the TLS
versions supported by the
client.

ServerHello Message

Contains a server generated
random value and the Cipher
Suite and compression method
to be used during the
communication.

The server will also deliver its
certificate and key material to
the client and optionally
request a certificate from the
client.

Client Reply
Contains the client key
material and, if requested,
client certificate details
along with a certificate
verification message

Subpage heading White Paper

Copyright © 2002 --- 2015 KEMP Technologies, Inc.

All Rights Reserved.

(Corporate HQ) 600 Fifth Ave. New York, NY 10020 | KEMPTechnologies.com

A [ChangeCipherSpec]
message is sent to indicate
that all future
communications will be
secure based on the Cipher
Suite agreed earlier

The server sends a
ChangeCipherSuite message to
indicate that all
communications are now
secured

Secure data Secure data

Protecting Private Keys
Possession of a private key enables assertion of identity and potentially access to
encrypted content and as such should be protected from access by non-authorized
entities. The protection of private key material needs to address how the key is
stored, how it is used and how it is managed. Key management for client devices
will normally be implemented via a smartcard where the private key is stored on a
cryptographically secured chip. For most internet based services, client
authentication is performed via username and password so there are no client keys
to manage.

Key management for internet accessible services provides a much greater challenge
as a service may be spread over multiple servers at multiple physical locations and
each server needs to access the private key in order to assert the identity of the
service.

Storing the private key in a file on a server (or shared storage) raises the issue of
how the key material is protected. One approach is to encrypt the file but this would
prevent services from auto-starting as they would need the decryption password to
access the keys. While having the file unencrypted would potentially expose key
material, many administrators would take a balanced view on the cost Vs risks and
rely on file system permissions and good security practices for protection.

For some, such as the financial sector, the value of content protected by private
keys is such that they need (and often mandated by regulation) to apply the most
rigorous security protocols and procedures. This is where the storage of key material
in specialist security hardware comes into play. The dedicated hardware can be
implemented as a plug in module (PCI or USB) or as a network attached service.
These Hardware security modules (HSM) store the private keys and any
cryptographic operation that requires access to the key is performed on the module.
This means that the private key material never leaves the security environment of

Subpage heading White Paper

Copyright © 2002 --- 2015 KEMP Technologies, Inc.

All Rights Reserved.

(Corporate HQ) 600 Fifth Ave. New York, NY 10020 | KEMPTechnologies.com

the HSM and so removes the challenge of protecting key material stored on servers.
A HSM may also provide enhanced protection including detection of physical attacks
and authentication. The level of protection offered by a HSM is often measured
against the FIPS-140 standard which outlines the levels of protection as follows

FIPS-140 Level Protection offered
Level 1 Software only with FIPS approved algorithms
Level 2 The HSM must provide evidence of physical tampering and

access must be controlled based on the role of the
accessing entity.

Level 3 The HSM must offer tamper resistance and authentication
based on identity. This level also provides separation
between how key material is used and how it is managed.
This allows for separation of security and operational
access.

Level 4 At this level the physical protections include active
deletion of key material if tampering is detected.

As well as protecting the key material, the HSM will also perform cryptographic
operations that use the keys which offloads the RSA key operation during the TLS
handshake leading to improved performance. Network attached HSMs provide the
most flexibility as they provide centralized key protection that can be access by a
range of hosts including load balancers, virtualized machines and cloud services.

Configuring TLS
Most TLS implementations will allow administrative control over which cipher suites
to use so that weak or vulnerable cipher suites can be disabled. In an ideal world
environment, the recommendations are to disable the use of weak ciphers such as
DES and RC4 and to avoid the use of backward compatibility protocols such as SSL
2.0. Older browser and OS combinations such as Explorer 6 on Windows XP do not
offer support for the newer and more secure cipher suites and an alternative
browser such as Chrome or Firefox should be considered. There is no one ‘best
source’ as to which cipher suites to use so regular trawls of multiple reputable
resources is recommended to ensure the security of deployments.

The method of configuring TLS cipher suites varies depending on the platform in
use. On the apache web server, the cipher suites to use and their precedence are
defined in the Apache configuration files. On Windows server platforms, the cipher
suites are defined in the registry with some third party tools available that perform
configuration via a GUI.

The KEMP LoadMaster platform allows configuration of cipher suites from the
administration interface and also some quick click options to control the use of
weak ciphers such as RC4.

Subpage heading White Paper

Copyright © 2002 --- 2015 KEMP Technologies, Inc.

All Rights Reserved.

(Corporate HQ) 600 Fifth Ave. New York, NY 10020 | KEMPTechnologies.com

Figure 7 - Cipher Suite Selection with Kemp Loadmaster

The centralized administration of cipher suites on a load balancer such as the KEMP
LoadMaster can greatly simplify the administration of TLS across multiple servers
and provide a single point of enforcement and audit of TLS policies.

